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Abstract In this paper, we introduce and study a new system of generalized mixed
quasi-variational inclusions with (H,n)-monotone operators which contains varia-
tional inequalities, variational inclusions, systems of variational inequalities and sys-
tems of variational inclusions in the literature as special cases. By using the resolvent
technique for the (H, n)-monotone operators, we prove the existence of solutions and
the convergence of some new p-step iterative algorithms for this system of general-
ized mixed quasi-variational inclusions and its special cases. The results in this paper
unifies, extends and improves some known results in the literature.

Keywords System of generalized mixed quasi-variational inclusions -
(H,n)-monotone operator - Existence - p-step iterative algorithm - Convergence

1 Introduction

Variational inclusion problems are among the most interesting and intensively studied
classes of mathematical problems and have wide applications in the fields of optimiza-
tion and control, economics and transportation equilibrium, engineering science. For
the past years, many existence results and iterative algorithms for various variational
inequality and variational inclusion problems have been studied. For details, please
see [1-47] and the references therein.

Recently, some new and interesting problems, which are called to be system of
variational inequality problems were introduced and studied. Pang [27], Cohen and
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Chaplais [28], Bianchi [29] and Ansari and Yao [15] considered a system of scalar
variational inequalities and Pang showed that the traffic equilibrium problem, the
spatial equilibrium problem, the Nash equilibrium, and the general equilibrium pro-
gramming problem can be modeled as a system of variational inequalities. Ansari
et al. [30] introduced and studied a system of vector equilibrium problems and a
system of vector variational inequalities by a fixed point theorem. Allevi et al. [31]
considered a system of generalized vector variational inequalities and established
some existence results with relative pseudomonotonicity. Kassay and Kolumban [16]
introduced a system of variational inequalities and proved an existence theorem by
the Ky Fan lemma. Kassay et al. [17] studied Minty and Stampacchia variational
inequality systems with the help of the Kakutani-Fan-Glicksberg fixed point theo-
rem. Peng [18,19] introduced a system of quasi-variational inequality problems and
proved its existence theorem by maximal element theorems. Verma [20-24] intro-
duced and studied some systems of variational inequalities and developed some
iterative algorithms for approximating the solutions of system of variational inequal-
ities in Hilbert spaces. Kim and Kim [25] introduced a new system of generalized
nonlinear quasi-variational inequalities and obtained some existence and unique-
ness results of solution for this system of generalized nonlinear quasi-variational
inequalities in Hilbert spaces. Cho et al. [26] introduced and studied a new sys-
tem of nonlinear variational inequalities in Hilbert spaces. They proved some exis-
tence and uniqueness theorems of solutions for the system of nonlinear variational
inequalities.

As generalizations of above systems of variational inequalities, Agarwal et al.
[32] introduced a system of generalized nonlinear mixed quasi-variational inclusions
and investigated the sensitivity analysis of solutions for this system of generalized
nonlinear mixed quasi-variational inclusions in Hilbert spaces. Kazmi and Bhat [33]
introduced a system of nonlinear variational-like inclusions and gave an iterative
algorithm for finding its approximate solution. Fang and Huang [34], Fang et al. [35]
introduced and studied a new system of variational inclusions involving H-monotone
operators and (H, n)-monotone operators, respectively. Yan et al. [36] introduced and
studied a system of set-valued variational inclusions which is more general than the
model in [34]. Peng and Zhu [37] introduced and studied a new system of general-
ized mixed quasi-variational inclusions involving (H,n)-monotone operators which
contains those mathematical models in [21-26,34-36] as special cases.

Inspired and motivated by the results in [15-37], the purpose of this paper is to intro-
duce a new mathematical model, which is called to be a system of generalized mixed
quasi-variational inclusions with (H,n)-monotone operators, i.e., a family of gener-
alized mixed quasi-variational inclusions with (H, n)-monotone operators defined on
a product set. This new mathematical model contains the system of inequalities in
[15,20-29] and the system of inclusions in [34-37], the variational inclusions in [1,
2,11] and some variational inequalities in the literature as special cases. By using
the resolvent technique for the (H,n)-monotone operators, we prove the existence
of solutions for this system of set-valued mixed quasi-variational inclusions. We also
prove the convergence of some p-step iterative algorithms approximating the solution
for this system of generalized mixed quasi-variational inclusions and its special cases.
The results in this paper unifies, extends and improves some results in [1,2,11,20-29,
34-37].
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2 Preliminaries

We suppose that H is a real Hilbert space with norm and inner product denoted by ||-||
and (-, -), respectively. Let CB(H) denote the families of all nonempty closed bounded
subsets of H, and D(-,-) denote the Hausdorff metric on CB(H) defined by

D(A, B) = max [sup d(a, B), sup d(A,b)] , VA,Be CB(H),
acA beB

where d(a, B) = infpcp |la — b||, d(A,b) = inf,cq ||la — b|.
Now we recall some definitions needed later.

Definition 2.1 [35]. Let n: H x H — H and H: H —> H be two single-valued
operators and M : H — 2™ be a set-valued operator. M is said to be

(i) n-monotone if,
(x —y,nWw,v)) > 0,Yu,v e H,x € Mu,y € Mv.
(ii) (H,n)-monotone if M is n-monotone and (H + AM)(H) = H, for all » > 0.

Remark 2.1 (1) Itis easy to know that if H = I ( the identity map on ), then the
definition of (1, n)-monotone operators is that of maximal n-monotone operators.

(2) If n(u,v) = u — v, then the definition of n-monotonicity is that of monotonic-
ity, the definition of (H, n)-monotonicity becomes that of H-monotonicity in [1]
and the definition of (/,n)-monotone operators is that of maximal monotone
operators.

(3) Hence, the class of (H,n)-monotone operators provides a unifying frameworks
for classes of maximal monotone operators, maximal n-monotone operators, H-
monotone operators. For more details about the above definitions, please refer
[1,34-38] and the references therein.

Definition 2.2 [1,38] Let H,g: H —> H, n : H x H —> H be three single-valued
operators. g is said to be

(i) monotone if
(gu —gv,u—v) >0, VYu,veH,

(ii) strictly monotone if g is monotone and

(gu —gv,u—v) =0ifand only if u = v;
(iii) strongly monotone if there exists a constant r > 0 such that

(gu —gv,u—v) >r|u— v||2, Yu,v € H.
(iv) Lipschitz continuous if there exists a constant s > 0 such that

lg@) — gl < slu—vl, Vu,veH.
(v) strongly monotone with respect to H if there exists a constant y > 0 such that
(gu — gv,Hu — Hv) > y|lu — v||2, u,v e H.

(vi) np-monotone if

(gu—gv,n(u,v)) >0, Vu,ve™H,
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(vii) strictly n-monotone if g is n-monotone and
(gu — gv,n(u,v)) =0if and only if u = v;
(viii) strongly n-monotone if there exists a constant r > 0 such that
(gu—gv,n(u,v)) > rllu—v|>, Yu,veH.

Definition 2.3 [38] Let n : H x H —> 'H be a single-valued operator, then 5(.,.) is
said to be Lipschitz continuous, if there exists a constant ¢ > 0 such that

”77(”,")” =< T”M - V”?vu’v € H.

Remark 2.2 Let H = R be the real number space, n1: Rx R — R,m: Rx R — R
and n73: R x R — R be defined by n1(u,v) = u — v,Vu,v € R, n2(u,v) = %(u —
v),Vu,v € R, n3(u,v) = 25in[%(u —v)],Vu,v € R. Itis easy to check that 5, 72 and n3
are all Lipschitz continuous functions.

Definition 2.4 [35] Let n: H x H —> H be a single-valued operator, H: H —> H be
a strongly n-monotone operator and M: H —> 2" be an (H,)-monotone operator.

Then the resolvent operator Rf,l’; :’H —> H is defined by
Ry (0 = (H+ M)~ (), VxeH.

Definition 2.5 [39] Let M: H — CB(H) be a set-valued mapping. Then M is said to
be D-Lipschitz continuous if there exists a constant & > 0 such that

DM, M) <Ellu—vl, VuveH.
We also need the following result obtained by Fan et al. [35].

Lemma 2.1 Let n: H x H —> 'H be a single-valued Lipschitz continuous operator
with constant t, H: H —> 'H be a strongly n-monotone operator with constant y > 0
and M : H —> 2™ be an (H,n)-monotone operator. Then, the resolvent operator

RZ’K: ‘H —> H is Lipschitz continuous with constant %, ie.,
H, H, T
IR0 = Ryl < =yl ¥y € 7
We extend some definitions in [37,39,45] to more general cases as follows.

Definition 2.6 Let 7, H>,...,H, be Hilbert spaces, g1: Hy —> H; and Ny: le
‘H;j —> H1 be two single-valued mappings.

(i) Np is said to be Lipschitz continuous in the first argument if there exists a
constant & > 0 such that

IN1(xq,x2,. .., xp) = N1(y1,x2,.. ., xp) | < &llx1 — y1ll,
Vxi,y1 € Hi,xj e Hj (j=2,3,...,p).

(i) Vi is said to be monotone in the first argument if

(N1(x1,x2,...,xp) — N1(y1,x2,...,%p),x1 —y1) > 0,
Vxi,y1 € Hi,xj e Hj (j=2,3,...,p).
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(iii) Nj issaid to be strongly monotone in the first argument if there exists a constant
a > 0 such that

(Nl(x1,x2,~ . -7xp) - Nl(}’l,x2,~ . '7xp)ax1 —}’1) = a”-xl _Y1||2,
Vxi,y1 € Hi,xj € Hj (j=2,3,...,p).

(iv) Nj is said to be monotone with respect to g in the first argument if

(N1(x1,x2,...,%p) — N1(y1,X2,...,%p),8(x1) — g(y1)) = 0,
Vxi,y1 € Hi,xj € Hj (j=2,3,...,p).

(v) Nj is said to be strongly monotone with respect to g in the first argument if
there exists a constant 8 > 0 such that

(N1 (x1,X2, ., Xp) — N1 (V1,%2, -, Xp), 8(x1) — gv1)) = Blixs — y1ll?,
Vx1,y1 € Hi,xj € Hj (j=2,3,...,p).

In a similar way, we can define the Lipschitz continuity and the strong monotonicity
(monotonicity) of N; : Hle H; —> H; (with respect to g; : H; — H;) in the ith
argument (i = 2,3,...,p).

3 A system of generalized mixed quasi-variational inclusions and a p-step iterative
algorithm

In this section, we will introduce a new system of generalized mixed quasi-variational
inclusions with (H, n)-monotone operators and construct some new p-step iterative
algorithm for solving this system of generalized mixed quasi-variational inclusions
and its special cases in Hilbert spaces. In what follows, unless other specified, for each
i=1,2,...,p,we always suppose that H; is a Hilbert space, H;, gi: H; —> H;, ni: H; X
Hi — H;, F;, G;: Hj.’:l ‘H;j —> M, are single-valued mappings, Ty;: H; —> CB(H,),
Ti: Hp —> CB(H,)),...,Tpi: Hy —> CB(H,) are set-valued mappings and M;: H; —
2" is an (H;, n;)-monotone operator. We consider the following problem of find-

ing (x17x2’- . ~7xp7)’117)’12,- . ~7Y1p»)’217)’22,- . ~7)’2p»- . a)/pLYpZ,- . ~7)’pp) SuCh that fOr
eachi=1,2,...,p,x; € H;, y1; € Thi(x1), y2i € T2i(x2), ..., ypi € Tpi(xp) and

0 € Fi(x1,x2,...,Xp) + Gi(Vi1, Yiz, - - ., Yip) + Mi(gi(xy)). (3.1

The Problem (3.1) is called a system of generalized mixed quasi-variational inclusions
with (H, n)-monotone operators.
Below are some special cases of Problem (3.1).

(i) If p = 2, then Problem (3.1) reduces to the following problem finding

(x1,X2,¥11, Y12, Y21, y22) such that (x1,x2) € Hy; x Ha, ynu € T11(x1), y12 €
T12(x1), y21 € T21(x2), y22 € T22(x2) and

0 € Fi(x1,x2) + G1(y11,y12) + M1(g1(x1)), (32)
0 € Fa(x1,x2) + G2(y21,y22) + Ma(g2(x2)). ’

Problem (3.2) was introduced and studied by Peng and Zhu [37].
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If p = 1, then Problem (3.1) reduces to the following variational inclusions,
which is to find (x1, y11) such that x; € Hy, y11 € T11(x1) and

0 € Fi(x1) + Gi(y11) + Mi(g1(x1)). (3.3)

If 71y = Hy = I; ((the identity map on H;)) and M be a maximal monotone
operator, then Problem (3.3) becomes the variational inclusion introduced and
studied by Adly [11] which contains the variational inequality in [2] as a special
case.

If Gi = 0,8 = I, and M is a H-monotone operator, then Problem (3.3)
becomes the variational inclusion in [1] which contains the nonlinear varia-
tional inequality and the classical variational inequality (i.e., problem (3.2) and
(3.3) in [1]) as special cases.

For eachj =1,2,...,p, if g; = I; ( the identity map on #;) and G; = 0, then
Problem (3.1) reduces to the system of variational inclusions with (H, n)-mono-
tone operators, which is to find (x1,xz,...,xp) € Hle H; such that

0 € Fi(xi,x2,...,%p) + M;(x;). (3.4)

If p = 2, then Problem (3.4) becomes the system of variational inclusions with
(H,n)-monotone operators in [35] which contains the system of variational
inclusions with H-monotone operators in [34] as a special case.
Foreachj=1,2,...,p,if g; = I}, nj(x;,y;) = xj—y;forallx;,y; € Hj,and F; = 0,
then Problem (3.1) reduces to the system of set-valued variational inclusions
with H-monotone operators, whichis to find (x1,x2,...,Xp, y11, Y12, - - - V1ps Y21,
Y225+ -2 Y2ps-++sYpls Yp2s--+»Ypp) such that for each i = 1,2,...,p, x; € H,,
yii € T1i(x1), y2i € T2i(x2), ..., ypi € Tpi(xp) and

0 € Gi(yit,yizs---»Yip) + Mi(xp). (3.5)

If p = 2, then Problem (3.5) becomes a system of set-valued variational inclu-
sions with H-monotone operators which contains the mathematical model in
[36] as a special case.

Foreachj=1,2,...,p, if Mj(x;) = dy,¢;(x;) for all x; € H;, where ¢;: Hj —>
R U {+o0} is a proper, nj-subdifferentiable functional and d,,¢; denotes the
nj-subdifferential operator of ¢;, then Problem (3.4) reduces to the following
system of variational-like inequalities, which is to find (x1,x2,...,xp) € Hle H;
such that foreachi=1,2,...,p,

(Fi(x1,%2, ..., Xp), 1i(2i, X)) + 0i(zi) — @i(x;)) =0, Vz; € H;. (3.6)

Foreachj=1,2,...,p,if M;(x;) = 0¢;(x)), for all x; € H;, where ¢; : H; —
R U {400} is a proper, convex, lower semicontinuous functional and d¢; denotes
the subdifferential operator of ¢;, then Problem (3.4) reduces to the following
system of variational inequalities, which is to find (x1,x,...,xp) € Hle H;
such that foreachi=1,2,...,p,

(Fi(x1,%x2,...,%p),2i — Xi) + 9i(z)) — ¢i(x;)) = 0, Vz; € H;. (3.7)

Foreachj=1,2,...,p,if M;(x;) = B(SKj(xj) for all x; € H;, where K; C H;is a
nonempty, closed and convex subsets and § K; denotes the indicator of K, then
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Problem (3.7) reduces to the following system of variational inequalities, which
is to find (x1,x2,...,x,) € [[%_, Hi such that for eachi=1,2,...,p,
(Fi(x1,x2,...,%p),zi —Xi) 2 0, Vz; € K;. (3.8)

Problem (3.8) was introduced and researched in [15,27-29]. If p = 2, then Prob-
lems (3.6), (3.7) and (3.8), respectively, become problems (3.2), (3.3) and (3.4) in [35].
It is easy to see that Problem (3.4) in [35] contains the models of system of variational
inequalities in [20-24] as special cases.

It is worthy noting that Problem (3.1), problems (3.4)—(3.7) are all new problems.

Lemma 3.1 Fori = 1,2,...,p, let n;: H; x Hi —> H; be a single-valued operator,
H;: H; —> 'H; be a strictly ni-monotone operator and M;: H; —> 2% is an (H;, n;)-
monotone operator. Then (X1,X2,...,Xp, Y11, Y125 ->Y1ps Y21 Y22s+-2Y2ps- -5 Vpl,
Yp2,- > Ypp) With x; € Hj, y1; € Thi(x1), y2i € T2i(x2), ..., ypi € Tpi(xp) (i=1,2,...,p)
is a solution of the Problem (3.1) if and only if for eachi =1,2,...,p,

gi(xi)) = Ry, Hini  Hi(gi(xd) — AiFi(xy, x2,.. . xp) — LiGi(yi, Yizs - - -5 Yip)s

where RJI:I/II,ZI, = (H; + M)~1 »; > 0is a constant.

Proof The fact directly follows from Definition 2.4 O
For any given x? € H; i = 1,2,...,p), take y(l)i € Tli(x?), ygl. € Tg,-(xg), ey
yoi € Tpi(x)) (i=1,2,...,p). Fori=1,2,...,p,let

x}:x?—gi( )—I—RH'n’ (Hi( i(x?)) —M\iF; (xl,xg,..., p) —1iGi (yll,ylz,...,ygu)).

Since y(])i € Tli(x(])), y(z)l. € Tgi(xg), cee Y2i € Tpi(xg) (i =12,...,p), by Nadler’s

Theorem [48], there exist yj; € T1;(x}), y}; € T2i(x3), ... yp; € Tpilxp) (i =1,2,....p),
such that foreachi =1,2,...,p,

=%l = A+ DD(Thi(x)), Ti(x)))
Iy2: =5 < A+ DD(Toi(xy), Tai(x))),

||y11n' - ygill < (14 DD(Tpi(x}), Tpi(x))-
Fori=1,2,...,p,let

xl-zlel—gi ( ) +RH' oM (Hi (gi (xll)) —AiF; (x%,x%, . ,xll)) —1iG; (yl‘ll’yllz, ce ,y}p)) .

Again by Nadler’s Theorem, there exist y%i € Tl,-(x%), y%l. € T2i(x%) . ypl € Tp,( 2)
(i=1,2,...,p),such that foreachi =1,2,...,p,

1
Iy3: - yh||<(1+ )D(T1,<x1) Tyi(xh)),

1
“)}21 yZz” = (1 + )D(Tz,(xl) TZz(x1))

1
”ylzn' _y;iH = (1 + )D(Tpt(xl) Tpt(xl))

By induction, we can obtain the following p-step iterative algorithm for solving
problem (3.1) as following:
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Algorithm 3.1 For any given x? € H; (i=1,2,...,p), we can compute the sequences
X' Vi Yais - Ypi (i = 1,2,..., p) by the following p-step iterative schemes such that
foreachi=1,2,...,p,

X = () + R (i (<) — MFi( 5. )
AG, ll,ylz,...,ylp) 3.9)
1\ -~
Vi € Tus(e), Il — i) < (1+;)D Tu(). Tu(@™).  (3.10)
1\ =~
e Tu) g -5 = (14 1) D(Tale). T ). (3
1\ -~
i € Tl o =i 0 = (14 ) D). Tl ). (312

forallm=0,1,2,....
we give a p-step iterative algorithm for solving Problem (3.4) as follows:

Algorithm 3.2 For any given x¥ € H; (i = 1,2,...,p), we can compute the sequences
x (i =1,2,...,p) by the following p-step iterative schemes such that for each i =
1,2,...,p,

X = RUPT(H(x) — MiFi (), xm)). (3.13)
foralln=0,1,2,....

Let E = E* = 'H be a Hilbert space, we can rewrite Definition 2.3 introduced by
Ahmad and Siddiqi [46] as follows.

Definition 3.1 Let n: H x H and H: H — H be two single-valued mappings, ¢ : H —
R U {400} be a proper, n-subdifferentiable functional. If for each x € H and for any
p > 0, there exist a unique point u € H satisfying

(Hu — x,n(y,u)) > ppu) — pp(y), Vye™H,

then the mapping x — u, denoted by Jg;f is said to be J"-proximal mapping of ¢.
By the definition of Jg ;2, we have x — Hu € pd,¢(u), it follows that

T o) = (H + poye) ™ ().

Remark 3.1 If H = I, then the definition of J"-proximal mapping of ¢ becomes that
of the n-proximal mapping of ¢ in [47].

we also give a p-step iterative algorithm for solving problem (3.6) as follows:

Algorithm 3.3 For any given x¥ € H; (i = 1,2,...,p), we can compute the sequences
xt (i =1,2,...,p) by the following p-step iterative schemes such that for each i =
1,2,....p,

Kt = Jg’:’(jj" (xfl — LiFi(x], x5, JZ)) . (3.14)
foralln =0,1,2,..., where JH '\' =(H; + )»ian,-</’j)_l-
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4 Existence of solutions and convergence of some iterative algorithms

We first prove the existence of solutions for Problem (3.1) and the convergence of the
p-step iterative sequences generated by Algorithm 3.1.

Theorem 4.1 Fori = 1,2,...,p, let n;: H; x H; —> H; be Lipshitz continuous with
constant t;, H;: H; —> H; be strongly nj-monotone and Lipschitz continuous with
constant y; and §;, respectively, gi: H; —> 'H; be strongly monotone and Lipschitz
continuous with constant r; and s;, respectively, F; : Hi:l Hy —> H; be strongly
monotone with respect to g; in the ith argument with constant o; > 0, Lipschitz con-
tinuous in the jth argument with constant f;; > 0 forj =1,...,i—1,i,i+1,...,p,
where gi: H; —> H; is defined by gi(x;) = H; o gi(x;) = Hi(gi(x;)),Vx; € H;, and
Gi: Hi:l Hyx — H; be Lipschitz continuous in the jth argument with constant §;; > 0
forj=12,....p, Mi: H; —> 2Mi be an (H;, n;)-monotone operator, and the set-val-
ued mappings Ty;: H1 —> CB(H,), T2i: H2 —> CB(H,),...,Tp; : Hp —> CB(H,) be
D-Lipschitz continuous with constants l;; > 0, p; > 0,..., I; > 0, respectively. If there
exist constants »; > 0 (i =1,2,...,p) such that

V1 —=2r :I—S12 + %\/812S12 — 21 +)»%ﬂ112
P
Fobh | Enln + 2 B+ &l | < 1,
L =2
V1=2rn 452+ %\/322S22 — 20an + A2 522

+2h2 | (B2 + E12l12) + 22l + Z(ﬂjz + §j21j2):| <1, (4.1)
i =

=2y 452+ 2. /8,257 — 2yt + 33y

T r-
e [g(ﬁm +&iplip) + Epplpp | < 1.
=

Then Problem (3.1) admits a solution (x1,x2,...,%p, Y11, Y125+ > Y1ps Y215

Y225y Y2pse - - ,ypl,ypz,...,ypp)andsequencesx’f,xg,...,xg,y?l,y'fz,...,y{’p,ygl,ygl,
ceeYaps oo V1Y poseYpp CONVETGE O X1, X2, . -+, Xp, Y115 Y125+ -5 V1ps Y215 Y225+ -5 Y2pae-os
Yp1,Yp2s -+ -»Ypp, TESPECtively, where x7', yq’i, Vs oes y;‘l- (i = 1,2,...,p) are the se-

quences generated by Algorithm 3.1.

Proof For i = 1,2,...,p, let Q! = Hj(gKx!") — AiFi(x’f,xg,...,xg) — Ai

Gi(yi1-Yias -+ Yip)-
By (3.9) and Lemma 2.1, we have,

i —af — &) + Ry (i) — AFi 3, ) = RGO, Y, Y))
—[X?’l—gi(xl 1)+RH’ M (Higi( 1)
“MF 5"1,...,xg—1)7m0i(y’?‘ ,y;’z‘l,...,y;};l»} H
< o =yt [gz(xl)—gl(x ] R (@~ 1)”
< ||x =X [gz(xl)—gz(x" D) ]H-i- QfF — i=12....p.  (42)
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Since g;: H; —> 'H; is strongly monotone and Lipschitz continuous with constant 7;
and s;, respectively, we have,

I — ! — (g ) — g 112

< I — 2 = 2(gid) — g, — ) g — g h)?
<A =2ri+sHIK —x"N2 i=1.2,...,p. (4.3)

And

I — 2

= | Hi(gi(x}) — AiFi(xy, x5, .., X))
—1iGi(Yis Vi - -+ Vip)
—[Hi(g( ™) — mFe ot i h
LG YE Ly Dl

< I Hi(gix!)) — Hi(gixf ™) = MilFi(e}, X Xl X

—Fixy,. .. ,)cl'-’fl,)c?*l,xf’+1 .. ,xZ)]II

Al Fi (e, .. ,x;’_l,x;’_l,xﬁrl ... ,xZ)

—F,-(x’l’fl, ... ,x?:ll,xffl,xl'.:f ... ,xzfl)ll

HAN G YY) =Gy YOI i=1.2, ., p. (44)

Since F;: ]_[f;:1 ‘Hj; —> 'H; is strongly monotone with respect to g; in the ith argu-
ment with constant «; > 0, and Lipschitz continuous in the ith argument with constant
Bii > 0, respectively, we get,

1Hi(gi(x)) — Hi(gi(ef ™)) = MilFixf, X xf g o x)

—Fi(xf,... ,x?_l,x?_l,xf‘+1 ... ,x;‘)]||2
< 1Hi(gi(x})) — Hi(gi(x} =)
=20 (Fi (X X X X ,x;)

—Fi( T X Hi(gi()) — Hi(gi(x )

2
A ||Fi(x;',...,xf_1,x?,x;’+1...,x;)
-1 2
—F(x], .. x ,xfﬂ...,xz)ll
2.2 25.2 “1\2
< (878" = 2hja; + A; B ) I — x5, i=1,2,...p. 4.5)

Since F;: H’,z: 1 Hx — Hiis Lipschitz continuous in the jth argument with constant
Bij>0forj=1,...,i—1,i+1,...,p, we have,
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n n n 1 n n—1 n—1 -1 .n—1 -1
IF (X Xy X)) — B g )
)
< ||F,~(x1,x2,...,x;’71,x:’ Xig oo eaXp)
-1 1
—Fi(xey X, x|

-1 ~1
HIFi e Xy, x5, XX ,x?H ... ,xl')’)

l 1 -1
—Fi] XX L T x) ]

+||F(x x5~ 1 X5 1,...,xf_1,x?’1,x;’+1 s Xp)
—Fi(x]™ x5~ 1 X5 1,...,xl'.’__11,xf‘ 1 AR )||
+||F-(x x’z’ 1,x3 1 ...,xf:ll,x" 1 z+1 )
—Fi(x} x5 1,x3 -1 ...,x?:ll,xf’ z+1 CoX )||
+||F'(x g 1,...,x?:11,x,’»l_1,x;’J:11...,xz)
—Fi(x{ x5 1,...,x;’:11,x?*1,xﬁ11...,xg’1)||

- 1 1
< B llx —x7 Y+ Bollxs — X+ A Bl =Xl
+BiirllxX g — ,H || +.

X n__ . n—1, _ N 1
+Biplxy — ) ||—Zﬂ,,||x,~ b
=1

p
+ D0 Bl =N, =12, (4.6)

j=itl

It follows from the Lipschitz continuity of G, the D-Lipschitz continuity of T},
(3.10), (3.11) and (3.12) that

HG(yl]’yQ»-"’ylp)_Gl(y ’ylz a'~"y1p )H
= H Gt(y?py:lZ’ .- sy;;;) - Gi(y;llilsy?Zw .. 9.){}))”
| GOB Yoy = Gy

+HG1 L) = GOy )H

< Zéij
j=1
4 1

<D & (1 + ﬁ) lij |1 x;
j=1

It follows from (4.2)—(4.7) that fori = 1,2,...,p,

e < [m
Ti 1
+;’_ (\/Bizsl.z — 20 + M B + hikiilii (1 + E))] ‘
1

y;]l' _yil ” - Zéll (1 + )D(Tl](xn) Tz](xn ]))

n—1

, i=12,....n (4.7)

xl' _.xl'

n n—1 ”
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i-1
1 Ti _
+ij (.Bij + &ijlij (1 + 7)) < ’x]” — X 1”
= n)) v
j_
c 1 i n n—1
+ Z i\ Bij + &iilij {1 + B B ‘x]- —X; H . (4.8)
j=it1 Vi
Therefore,
p p
S x> [ [\/1 —2ri + 52
i=1 i=1
i 1
+3 (\/Sizsl‘z — 2hjai + A7 Bii? + hiiili (1 + ;))] I —
1
i1 1NN o )
+D0% (ﬁi/' + &jlij (1 + *)) L =N
=1 e

P
1 T _
+ 2 (ﬁij+§i/1ii (1 + ;)) ;;IIXf —x! l||]

j=it1

= \/l — 27‘] +S12 =+ E\/alzslz — 2)\1041 +)\2/3]]2
" !
! 1 d 1 n_ on—1
+H'\1 fulu\1+ )+ DB +eul (1+ p |
=2
T T 1
+ (\/1 -2+ + sz/f?zzszz — 200y +33P0% + Ezkz { (ﬁlz +&1h> (1 + ;))
1 < 1 n n—1
tenhy 1+ + D (B2 +8pln I+ g =511 +...
j=3
_ 2. [s2.2 24 2
+ 1=2rp +5p“ + ) 8p“sp 2hpap +Ap/3pp
D
p = 1 1 n n—1
+%)‘P > B +Eplp (1+ o)) el \ 1+ Iy —xp
j=1

<On (i e — ! |> , (4.9)

i=1
where

T
6, = max [\/1 —2}’1 -‘,—Slz + 71\/312S]2 —2)»]0[] +K%ﬁ]]2

P
151 1 ) w l
+ZA E11l (1 + ;) +l§ (1311 + &1l (1 + n))} ;

—_

T
\/ 1—2r 452 + y—z\/ 82502 — 2hg0y + 33 P20°
)

o 1 1 el L 1
+Z)" (/312 + &1l (1 + ;)) +é&nhn (1 + ;) + - (/3]2 + &l (1 + n)):| ,

L J

[\
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T,
. ,\/1 —2rp + sp2 + ﬁ\/sp%,ﬂ —2hpap + AIZ,,BPPZ

p—1
T 1 1
+£AP [Z (‘3jp +&plip (1 + ;)) + &pplpp (1 + n):| ] .

j=1

Let

T
6 = max |\/1 —2r +s12 + ﬁ\/(sl Sl — 20 +}\,2'311 + 77)\_1 |:511111 + Z (,3]1 +3;']1 ):| )
j=2

2
\/1*2r2+S22+E\/522S2 —2har+13p2? +*?~2 {(ﬂ12+$12112)+$22122+z B +&pl; )},
j=3

p—1
™ 4
.,\/1 —2rp +sp? + E\/‘szsﬁ — 20pap + 2 Bpp? + E)‘P |:§. (Bip +&iplip) + SPPZPP} ] :
=1

Then 6,, — 6 as n —> oo. By (4.1), we know that 0 < 6 < 1 and so (4.9) implies
that x{’, x4,..., x are all Cauchy sequences. Thus, there exist x; € Hy, x2 € Ha,...,
Xp € Hp such that x| —> x1, x5 — )Q,...,x; —> Xpasn — o0.

Now we prove that y}, — i € T1;(x1), ¥5; —> 2 € Tz,'(x?), o y;l- — Ypi €
Tpi(xp) (i=1,2,...,p). In fact, it follows from the Lipschitz continuity of T7;, T>;, ...,

Tp;i and (3.14)-(3.22) thatfori = 1,2,..., p,

_ 1
Iy =yt < (1 + 2) hillxy — X, (4.10)
1 _
Iy, — ¥l < (1 + ;) Lillxy — X571, (4.11)
1 n—1
Iypi = i = 14— ) dpilly =5 (4.12)

From (4.10)-(4.12), we know that y;, y5,, ..., yp;,( i = 1,2,...,p) are also Cauchy
sequences. Therefore, there exist y1; € Hy, y2i € Ha, ...,Vpi € Hp such thaty;, — yy;,
yé’i — V2, ...,yzi —> ypi asn —> oo. Further, fori=1,2,...,p,

dy1i, Trix) < [y = yi| + 407, (Trita)))
< |y = Y| + DAT), (Thix1)))
< lyri =yl + fi | -

Since Ty;(x71) is closed, we have yi; € Ty;(x1) (i = 1,2,...,p). Similarly, yy; €
T5i(x2),...,ypi € Tpi(xp) (i =1,2,...,p). By continuity of g;, H;, F;, G;, T1;, T2, . . .,
Tpl,R Hini andAlgorithm 3.1, we know thatx1,x2,. .., Xp, Y11, Y12, - - -» Y1p> Y21, Y225 - - -5
Yops--- ,yp1 ,¥Yp2,- - ., Ypp satisfy the following relation,

gi(x;) = H’ o G (HiGi(xd) — AiFi(xy, x2,. .., xp) —XiGiyin, iz, - - -, Yip)),  i=12,....p

By Lemma 3.1, (X1,X2, .., Xp, Y11, Y125+« + s Yips Y21, Y225 s Y2pse-+sVpls Yp2s - - - Ypp)
is a solution of problem (3.1). This completes the proof. O
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Remark 4.1 By the results in Sects. 3 and 4, it is easy to obtain the convergence results
of iterative algorithms for the other special cases of Problem (3.1), now we give two
examples as follows.

Fori=1,2,...,p,let G; =0,g; = I;,thenr; =s; =1,§; =0fori,j =1,2,...,p.
By Theorem 4.1, we have the following result.

Corollary 4.1 Fori = 1,2,...,p, let n;: H; x H; —> H; be Lipshitz continuous with
constant t;, H;: H; —> H; be strongly nj-monotone and Lipschitz continuous with
constant y; and §;, respectively, F;: Hi:l Hyx —> H; be strongly monotone with respect
to H; in the ith argument with constant a; > 0, Lipschitz continuous in the jth argu-
ment with constant Bj; > 0 forj=1,...,i—-1,i,i+1,...,p, M;: H; —> 2Hi be an
(Hj, ni)-monotone operator. If there exist constants A; > 0 (i = 1,2,...,p) such that

p
%\/512 — 2k + 21817 + (j2 ,3]'1) <1,

19) \/6 2 2 )\2 2 2y g . 1
7027 = 2haar + A3B0" + | P2 +/§'B]2 <1, (4.13)

p—1
T 2 2 T
ﬁ\/(sp — 2hpap + 23 Bpp” + Vf?xp(zi ﬁjp) <1

Then Problem (3.4) admits a solution (x1,x2,...,%,) and sequences x{,x3, ... ’XZ
converge to x1,x2,...,X, are the sequences generated by Algorithm 3.2.

Lemma 4.1 Let H: H — H be strongly n-monotone with constanty > 0, n: H x H —
‘H be Lipschitz continuous with constant Tt > 0 such that n(x,y) = —n(y,x) for all
X,y € H and for any given x € H, the function h(y,u) = (x — Hu,n(y,u)) is 0-diago-
nally quasi-concaveiny, ¢ : H — RU{+o00} be a proper, n-subdifferentiable functional.
Then 9, is (H,n)-monotone.

Proof We can prove that 9,¢ is n-monotone. In fact, for any xj,x, € H, fl* IS
de(x1),f5 € d,9(x2), we have
o) — o) = (ff,n(v,x1), VyeH. (4.14)
p(y) —p(x2) = (f5,n(y,x2)), VyeH. (4.15)

Taking y = x; in (4.14) and y = x1 in (4.15), and adding these inequalities, we
obtain

(fi'sn(x2,x1)) + (5, n(x1,x2)) < 0. (4.16)

Since n(xz,x1) = —n(x1,x2) for all x1,x2 € H, we have

(ff = fn(x1,x2)) > 0.

The above inequality implies that 9, ¢ is n-monotone.
It follows from Theorem 2.1 in [46] that for any p > 0, and any x € H, there exists
a unique u € H such that x — Hu € pd,p(u). Thatis, x € (H + pd,p)(u). This implies
that H S (H + pd,¢)(H). And so (H + pd,¢)(H) = H. This completes the proof. O
Fori=1,2,...,p, let M; = 0,,¢;. By Corollary 4.1 and Lemma 4.1, we have the
following result.
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Corollary 4.2 For i = 1,2,...,p, let H;: H; —> H; be strongly n;-monotone and
Lipschitz continuous with constant y; and §;, respectively, n;: H; x H; —> H; be Lips-
chitz continuous with constant t; such that n;(x;,y;) = —ni(yi,x;) for all x;,y; € H; and
for any given x; € Hj;, the function hi(yi,u;) = (x;j — Hiju;,n;(yi,u;)) is 0-diagonally
quasi-concave in y;, ¢j: Hj —> R U {400} is a proper, nj-subdifferentiable functional,
F;: Hi:l ‘Hi —> H; be strongly monotone with respect to H; in the ith argument with
constant o; > 0, Lipschitz continuous in the jth argument with constant g > 0 for
j=1,...,i—1,i,i+1,...,p. If there exist constants 1; > 0 (i = 1,2,...,p) such that

i P
%\/512 — 201 +A1B1% + T (EZ ﬂjl) <1,

2\/52—% + 138202 + 2| B +§ﬁ» <1
n V02 202 T+ AZP227 1 A2 P12 2 ) (4.17)

j=3

p—

1
T, 2 2, 5
ﬁ\/’sp — 2hpatp + A5 Bpp” + e (121 ﬂjp) <1

Then Problem (3.6) admits a solution (x1,x2,...,X,) and sequences x/,x3,...,x
converge to x1,Xx2, ..., X, are the sequences generated by Algorithm 3.3.

Remark 4.2 Theorem 4.1, Corollary 4.1 and Corollary 4.2 unifies, improves and
extends those corresponding results in [20-26,34-37] in several aspects.

Remark 4.3 Problem (3.6) can not be treated in the classical framework of maximal
monotone operators.
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